Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687439

RESUMO

The understanding of ion dynamics in plasma applications has received significant attention. In this study, we examined these effects between He and Ar species, focusing on the Ar ion flux on the substrate. To control heterogeneous collisions, we varied the He addition rate at fixed chamber pressure and the chamber pressure at fixed Ar/He ratio in an inductively coupled Ar/He plasma source. Throughout the experiments, we maintained an electron density in the bulk plasma and plasma potential as a constant value by adjusting the RF power and applying an additional DC bias to eliminate any disturbances caused by the plasma. Our findings revealed that the addition of He enhances the Ar ion flux, despite a decrease in the Ar ion density at the plasma-sheath boundary due to the presence of He ions. Moreover, we found that this enhancement becomes more prominent with increasing pressure at a fixed He addition rate. These results suggest that the heterogeneous charge transfer collision between Ar atoms and He ions in the sheath region creates additional Ar ions, ultimately leading to an increased Ar ion flux on the substrate. This finding highlights the potential of utilizing heterogeneous charge transfer collisions to enhance ion flux in plasma processing, without the employment of additional equipment.

2.
Materials (Basel) ; 16(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37629915

RESUMO

This paper proposes the use of environmentally friendly alternatives, C6F6 and C4H2F6, as perfluorocarbon (PFC) and hydrofluorocarbon (HFC) precursors, respectively, for SiO2 plasma etching, instead of conventional precursors C4F8 and CHF3. The study employs scanning electron microscopy for etch profile analysis and quadrupole mass spectrometry for plasma diagnosis. Ion bombardment energy at the etching conditions is determined through self-bias voltage measurements, while densities of radical species are obtained using quadrupole mass spectroscopy. The obtained results compare the etch performance, including etch rate and selectivity, between C4F8 and C6F6, as well as between CHF3 and C4H2F6. Furthermore, greenhouse gas (GHG) emissions are evaluated using a million metric ton of carbon dioxide equivalent, indicating significantly lower emissions when replacing conventional precursors with the proposed alternatives. The results suggest that a significant GHG emissions reduction can be achieved from the investigated alternatives without a deterioration in SiO2 etching characteristics. This research contributes to the development of alternative precursors for reducing global warming impacts.

3.
Materials (Basel) ; 16(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241447

RESUMO

As the process complexity has been increased to overcome challenges in plasma etching, individual control of internal plasma parameters for process optimization has attracted attention. This study investigated the individual contribution of internal parameters, the ion energy and flux, on high-aspect ratio SiO2 etching characteristics for various trench widths in a dual-frequency capacitively coupled plasma system with Ar/C4F8 gases. We established an individual control window of ion flux and energy by adjusting dual-frequency power sources and measuring the electron density and self-bias voltage. We separately varied the ion flux and energy with the same ratio from the reference condition and found that the increase in ion energy shows higher etching rate enhancement than that in the ion flux with the same increase ratio in a 200 nm pattern width. Based on a volume-averaged plasma model analysis, the weak contribution of the ion flux results from the increase in heavy radicals, which is inevitably accompanied with the increase in the ion flux and forms a fluorocarbon film, preventing etching. At the 60 nm pattern width, the etching stops at the reference condition and it remains despite increasing ion energy, which implies the surface charging-induced etching stops. The etching, however, slightly increased with the increasing ion flux from the reference condition, revealing the surface charge removal accompanied with conducting fluorocarbon film formation by heavy radicals. In addition, the entrance width of an amorphous carbon layer (ACL) mask enlarges with increasing ion energy, whereas it relatively remains constant with that of ion energy. These findings can be utilized to optimize the SiO2 etching process in high-aspect ratio etching applications.

4.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049056

RESUMO

Despite over 90 years of study on the emissive probe, a plasma diagnostic tool used to measure plasma potential, its underlying physics has yet to be fully understood. In this study, we investigated the voltages along the hot filament wire and emitting thermal electrons and proved which voltage reflects the plasma potential. Using a circuit model incorporating the floating condition, we found that the lowest potential on the plasma-exposed filament provides a close approximation of the plasma potential. This theoretical result was verified with a comparison of emissive probe measurements and Langmuir probe measurements in inductively coupled plasma. This work provides a significant contribution to the accurate measurement of plasma potential using the emissive probe with the floating potential method.

5.
Materials (Basel) ; 16(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110054

RESUMO

Electron temperature has attracted great attention in plasma processing, as it dominates the production of chemical species and energetic ions that impact the processing. Despite having been studied for several decades, the mechanism behind the quenching of electron temperature with increasing discharge power has not been fully understood. In this work, we investigated the quenching of electron temperature in an inductively coupled plasma source using Langmuir probe diagnostics, and suggested a quenching mechanism based on the skin effect of electromagnetic waves within local- and non-local kinetic regimes. This finding provides insight into the quenching mechanism and has implications for controlling electron temperature, thereby enabling efficient plasma material processing.

6.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904724

RESUMO

The importance of monitoring the electron density uniformity of plasma has attracted significant attention in material processing, with the goal of improving production yield. This paper presents a non-invasive microwave probe for in-situ monitoring electron density uniformity, called the Tele-measurement of plasma Uniformity via Surface wave Information (TUSI) probe. The TUSI probe consists of eight non-invasive antennae and each antenna estimates electron density above the antenna by measuring the surface wave resonance frequency in a reflection microwave frequency spectrum (S11). The estimated densities provide electron density uniformity. For demonstration, we compared it with the precise microwave probe and results revealed that the TUSI probe can monitor plasma uniformity. Furthermore, we demonstrated the operation of the TUSI probe beneath a quartz or wafer. In conclusion, the demonstration results indicated that the TUSI probe can be used as an instrument for a non-invasive in-situ method for measuring electron density uniformity.

7.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558310

RESUMO

SiO2 etching characteristics were investigated in detail. Patterned SiO2 was etched using radio-frequency capacitively coupled plasma with pulse modulation in a mixture of argon and fluorocarbon gases. Through plasma diagnostic techniques, plasma parameters (radical and electron density, self-bias voltage) were also measured. In this work, we identified an etching process window, where the etching depth is a function of the radical flux. Then, pulse-off time was varied in the two extreme cases: the lowest and the highest radical fluxes. It was observed that increasing pulse-off time resulted in an enhanced etching depth and the reduced etching depth respectively. This opposing trend was attributed to increasing neutral to ion flux ratio by extending pulse-off time within different etching regimes.

8.
Nanomaterials (Basel) ; 12(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432249

RESUMO

Recently, the uniformity in the wafer edge area that is normally abandoned in the fabrication process has become important for improving the process yield. The wafer edge structure normally has a difference of height between wafer and electrode, which can result in a sheath bend, distorting important parameters of the etch, such as ionic properties, resulting in nonuniform etching. This problem nowadays is resolved by introducing the supplemented structure called a focus ring on the periphery of the wafer. However, the focus ring is known to be easily eroded by the bombardment of high-energy ions, resulting in etch nonuniformity again, so that the focus ring is a consumable part and must be replaced periodically. Because of this issue, there are many simulation studies being conducted on the correlation between the sheath structural characteristics and materials of focus rings to find the replacement period, but the experimental data and an analysis based on this are not sufficient yet. In this study, in order to experimentally investigate the etching characteristics of the wafer edge area according to the sheath structure of the wafer edge, the etching was performed by increasing the wafer height (thickness) in the wafer edge area. The result shows that the degree of tilt in the etch profile at the wafer edge and the area where the tilt is observed severely are increased with the height difference between the wafer and electrode. This study is expected to provide a database for the characteristics of the etching at the wafer edge and useful information regarding the tolerance of the height difference for untilted etch profile and the replacement period of the etch ring.

9.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364574

RESUMO

One of the cleaning processes in semiconductor fabrication is the ashing process using oxygen plasma, which has been normally used N2 gas as additive gas to increase the ashing rate, and it is known that the ashing rate is strongly related to the concentration of oxygen radicals measured OES. However, by performing a comprehensive experiment of the O2 plasma ashing process in various N2/O2 mixing ratios and RF powers, our investigation revealed that the tendency of the density measured using only OES did not exactly match the ashing rate. This problematic issue can be solved by considering the plasma parameter, such as electron density. This study can suggest a method inferring the exact maximum condition of the ashing rate based on the plasma diagnostics such as OES, Langmuir probe, and cutoff probe, which might be useful for the next-generation plasma process.

10.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36081045

RESUMO

As the analysis of complicated reaction chemistry in bulk plasma has become more important, especially in plasma processing, quantifying radical density is now in focus. For this work, appearance potential mass spectrometry (APMS) is widely used; however, the original APMS can produce large errors depending on the fitting process, as the fitting range is not exactly defined. In this research, to reduce errors resulting from the fitting process of the original method, a new APMS approach that eliminates the fitting process is suggested. Comparing the neutral densities in He plasma between the conventional method and the new method, along with the real neutral density obtained using the ideal gas equation, confirmed that the proposed quantification approach can provide more accurate results. This research will contribute to improving the precision of plasma diagnosis and help elucidate the plasma etching process.


Assuntos
Plasma , Humanos , Masculino , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes
11.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016029

RESUMO

As the importance of ion-assisted surface processing based on low-temperature plasma increases, the monitoring of ion energy impinging into wafer surfaces becomes important. Monitoring methods that are noninvasive, real-time, and comprise ion collision in the sheath have received much research attention. However, in spite of this fact, most research was performed in invasive, not real-time, and collisionless ion sheath conditions. In this paper, we develop a noninvasive real-time IED monitoring system based on an ion trajectory simulation where the Monte Carlo collision method and an electrical model are adopted to describe collisions in sheaths. We technically, theoretically, and experimentally investigate the IED measurement with the proposed method, and compared it with the result of IEDs measured via a quadrupole mass spectrometer under various conditions. The comparison results show that there was no major change in the IEDs as radio-frequency power increased or the IED gradually became broad as gas pressure increased, which was in a good agreement with the results of the mass spectrometer.

12.
Sensors (Basel) ; 22(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957427

RESUMO

As the conventional voltage and current (VI) probes widely used in plasma diagnostics have separate voltage and current sensors, crosstalk between the sensors leads to degradation of measurement linearity, which is related to practical accuracy. Here, we propose a VI probe with a floating toroidal coil that plays both roles of a voltage and current sensor and is thus free from crosstalk. The operation principle and optimization conditions of the VI probe are demonstrated and established via three-dimensional electromagnetic wave simulation. Based on the optimization results, the proposed VI probe is fabricated and calibrated for the root-mean-square (RMS) voltage and current with a high-voltage probe and a vector network analyzer. Then, it is evaluated through a comparison with a commercial VI probe, with the results demonstrating that the fabricated VI probe achieved a slightly higher linearity than the commercial probe: R2 of 0.9967 and 0.9938 for RMS voltage and current, respectively. The proposed VI probe is believed to be applicable to plasma diagnostics as well as process monitoring with higher accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...